Chromatin Architecture of the Human Genome Gene-Rich Domains Are Enriched in Open Chromatin Fibers
نویسندگان
چکیده
We present an analysis of chromatin fiber structure across the human genome. Compact and open chromatin fiber structures were separated by sucrose sedimentation and their distributions analyzed by hybridization to metaphase chromosomes and genomic microarrays. We show that compact chromatin fibers originate from some sites of heterochromatin (C-bands), and G-bands (euchromatin). Open chromatin fibers correlate with regions of highest gene density, but not with gene expression since inactive genes can be in domains of open chromatin, and active genes in regions of low gene density can be embedded in compact chromatin fibers. Moreover, we show that chromatin fiber structure impacts on further levels of chromatin condensation. Regions of open chromatin fibers are cytologically decondensed and have a distinctive nuclear organization. We suggest that domains of open chromatin may create an environment that facilitates transcriptional activation and could provide an evolutionary constraint to maintain clusters of genes together along chromosomes.
منابع مشابه
Roles of Chromatin insulators in gene regulation and diseases
With advances in genetic science, the dynamic structure of eukaryotic genome is considered as basis of gene expression regulation. Long-distance communication between regulatory elements and target promoters is critical and the mechanisms responsible for this connection are just starting to emerge. Chromatin insulators are key determinants of proper gene regulation and precise organization of c...
متن کاملNuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملComparative analysis of metazoan chromatin organization
Genome function is regulated dynamically in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in C. elegans and D. melanogaster have contributed significantly to our understanding of molecular mechanisms of genome function in humans, and revealed conservation of chromatin components and mechanisms1–3. Nevertheless, the three orga...
متن کاملI-40: Male Genome Programming, Infertility and Cancer
Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...
متن کاملCTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells
BACKGROUND CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 118 شماره
صفحات -
تاریخ انتشار 2004